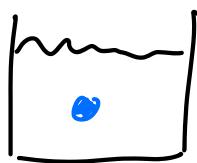


Recap so far



colloidal particle in a fluid

(i)

① Equation of motion

Generalized Lagrangian eq^o: $m\dot{x} = p; \dot{p} = -V'(x) - \int_s^t ds K(t-s) \dot{x}(s) + \xi(t)$

where $\xi(t)$ is a Gaussian noise with $\langle \xi(t) \xi(t') \rangle = k_B T K(t-t')$

White noise limit when fluid relaxation time \ll colloid

$m\dot{x} = p; \dot{p} = -V'(x) - \gamma \dot{x} + \xi(t)$, where $\xi(t)$ is a Gaussian white noise with $\langle \xi(t) \rangle = 0$ & $\langle \xi(t) \xi(t') \rangle = 2 \gamma k_B T \delta(t-t')$

Overdamped limit In viscous fluid, inertia is negligible & $\dot{x} = -\mu V'(x) + \gamma(t)$, with $\mu = \frac{1}{\gamma}$ the particle mobility & $\langle \gamma(t) \gamma(t') \rangle = 2 \mu k_B T \delta(t-t')$

② Path probability $P[\gamma(t)] \propto \frac{1}{Z} e^{-\int dt \gamma(t)^2}$

For an α discretization $x(t+\Delta t) - x(t) = F(x^\alpha(t)) + \int_t^{t+\Delta t} ds \gamma(s)$

$$P[\{x(t)\}] \propto \frac{1}{Z} e^{-\int dt \left\{ \frac{[x - F(x)]^2}{4 k_B T} + \alpha F'(x) \right\}}$$

③ Probability distribution of $x(t)$

$$\frac{\partial}{\partial t} P(x, t | x_0, 0) = \frac{\partial}{\partial x} \left[-F(x) + k_B T \frac{\partial}{\partial x} \right] P(x, t | x_0, 0)$$

When $F(x) = -V'(x)$, $P(x) = \frac{1}{Z} e^{-\beta V(x)}$ is a time inde- (ii)

-pendent solution of the Fokker-Planck equation.

Comment: For $P(x)$ to be normalizable, we need $\int dx e^{-\beta V(x)} < +\infty$
 $\Rightarrow V(x)$ has to diverge fast enough.

If $V(x) \sim \varepsilon \log|x|$, $e^{-\beta V(x)} \underset{x \rightarrow \infty}{\sim} \frac{1}{|x|^{\beta \varepsilon}}$ not integrable for $\varepsilon \beta \leq 1$
 $\Rightarrow kT \geq \varepsilon$

\Rightarrow at high temperature, the system does not equilibrate.

The potentials that diverge faster than logarithmically are called confining potentials.

Today: ① N dimensional Fokker-Planck eq^o

② Spectral theory of the Fokker-Planck eq^o

③ Study time-reversal symmetry in the steady state

2) The N -dimensional Fokker-Planck equation

(3)

Let's consider $x_i = F_i(x_1, \dots, x_N) + \gamma_i$ where γ_i are GAW s.t. $\langle \gamma_i \rangle = 0$

and $\langle \gamma_i(t) \gamma_h(s) \rangle = B_{ih} \delta(t-s)$

$P(x_1, \dots, x_N, t) = \langle \tilde{P} \delta(x_i - g_i(t)) \rangle_{\tilde{g}}$

measures

stochastic processes

$$\frac{\partial P}{\partial t} = \sum_h \left\langle \frac{\partial}{\partial g_h} \left(\tilde{P} \delta(x_i - g_i) \right) \dot{g}_h \right\rangle_{\tilde{g}} + \sum_{j \neq h} \left\langle \frac{B_{jh}}{2} \frac{\partial^2}{\partial g_j \partial g_h} \tilde{P} \delta(x_i - g_i) \right\rangle_{\tilde{g}}$$

Itô $\left\langle \frac{\partial}{\partial g_h} \left(\tilde{P} \delta(x_i - g_i) \right) \dot{g}_h \right\rangle_{\tilde{g}}$

$$= \int \left(\tilde{P} dg_i \right) \left\{ \sum_h \frac{\partial}{\partial g_h} \left[\tilde{P} \delta(x_i - g_i) \right] F_h P + \sum_{j \neq h} \frac{\partial^2}{\partial g_j \partial g_h} \left[\tilde{P} \delta(x_i - g_i) \right] \frac{B_{jh}}{2} P \right\}$$

$$\stackrel{IBP}{=} \int \tilde{P} dg_i \cdot \left[\tilde{P} \delta(x_i - g_i) \right] \left\{ \sum_h - \frac{\partial}{\partial g_h} \left[F_h P \right] + \sum_{j \neq h} \frac{\partial^2}{\partial g_j \partial g_h} \left[\frac{B_{jh}}{2} P \right] \right\}$$

leading to the Fokker-Planck equation

$$\frac{\partial P(x_1, \dots, x_N, t)}{\partial t} = \sum_h \frac{\partial}{\partial x_h} \left[-F_h - \sum_j \frac{\partial}{\partial x_j} \frac{B_{jh}}{2} \right] P(x_1, \dots, x_N, t)$$

Conservation of probability:

This can again be written as

$$\frac{\partial P}{\partial t} = - \sum_h \frac{\partial}{\partial x_h} \cdot J_h = - \vec{\nabla} \cdot \vec{J}, \text{ where the probability}$$

current is given by $J_h = F_h P - \sum_j \frac{\partial}{\partial x_j} \frac{B_{jh}}{2} P$

advection

diffusion

B_{jh} tells us how mass along \hat{j} leads to a diffusive current along \hat{h} .

(4)

Application: Undamped Langevin equation & the Kramers equation

$$m\ddot{q} = p; \dot{p} = -\frac{\partial}{\partial q} - V'(q) + \sqrt{2\kappa_{\text{HT}}} \zeta(t) \quad \text{with } \langle \zeta(t) \rangle = 0 \quad (m=1)$$

and $\langle \zeta(t) \zeta(s) \rangle = \delta(t-s)$. As before, we can understand this equation as specifying mass on both q & p , but with $B_{qq} = B_{qp} = B_{pq} = 0$ & $B_{pp} = 2\kappa_{\text{HT}}$. Thus the equation for $P(q, p, t)$ reads

$$\frac{\partial}{\partial t} P(\bar{q}, \bar{p}, t) = -\frac{\partial}{\partial q} \left(\frac{p}{m} P \right) + \frac{\partial}{\partial p} \left(\frac{p}{m} p + V'(q) \right) P + \kappa_{\text{HT}} \frac{\partial^2}{\partial p^2} P$$

This is called the Kramers equation.

Steady state solution in the presence of a confining potential

$$H = \frac{p^2}{2m} + V(q) \Rightarrow \frac{\partial}{\partial q} (e^{-\beta H}) = -\beta V'(q) e^{-\beta H} \quad \text{and} \quad \frac{\partial}{\partial p} e^{-\beta H} = -\beta \frac{p}{m} e^{-\beta H}.$$

Let's show that the steady-state solution is $e^{-\beta H}$.

$$\begin{aligned} & -\frac{\partial}{\partial q} \left(\frac{p}{m} e^{-\beta H} \right) + \frac{\partial}{\partial p} \left(\frac{p}{m} e^{-\beta H} + V'(q) e^{-\beta H} + \kappa_{\text{HT}} \left(-\frac{p}{m} e^{-\beta H} \right) \right) \\ &= -\frac{p}{m} \left[-\beta V'(q) e^{-\beta H} \right] + V'(q) \left[-\frac{p}{m} e^{-\beta H} \right] = 0 \end{aligned}$$

Again, the steady state corresponds to the Boltzmann weight.

Comment: The steady state is independent from γ , which is a purely **kinetic** parameter and plays no role in the **thermodynamics** of equilibrium systems. It, however, controls the relaxation rate of the system towards steady-state.

Comment: The same result holds for a space-dependent viscosity $\gamma(\vec{q})$, but not for $T(\vec{q})$, which leads to a non-equilibrium steady state.

Recap so far:

Stochastic dynamics: $\dot{\vec{r}} = -\mu \vec{\nabla} V + \sqrt{2\mu kT} \vec{\zeta}$

- clear physical picture of the dynamics
- simulations
- stochastic calculus → evolution of observables
 - correlation functions

Fokker-Planck equation: $\partial_t P = -\vec{\nabla} \cdot [-\mu \vec{\nabla} V P - \mu kT \vec{\nabla} P]$

- hard to simulate
- statistical information/intuition through $P(\vec{r})$
 - e.g. Show that $P_S(\vec{r}) \propto e^{-\beta H}$
- Now: very powerful operator calculus

3) The Fokker-Planck operator

(6)

$$\frac{\partial}{\partial t} P = \frac{\partial}{\partial x} \left[h^T \frac{\partial}{\partial x} - F(x) \right] P(x, t) \quad (1) \iff \frac{\partial}{\partial t} P = -H_{FP} P \quad \text{where}$$

$H_{FP} = -\frac{\partial}{\partial x} \left[h^T \frac{\partial}{\partial x} - F(x) \right]$ which acts on the Hilbert space of functions $\mathcal{H}(P)$ that depends on the dimensions & boundary conditions of the problem.

3.1 Relaxation towards equilibrium

Q: How does a system relax towards equilibrium?

Tentative ansatz: $P(x, t) = e^{-\lambda t} P_0(x)$

$$(1) \quad \frac{\partial}{\partial t} P = -H_{FP} P_0(x) e^{-\lambda t} = -\lambda P_0 e^{-\lambda t} \iff H_{FP} P_0(x) = \lambda P_0(x)$$

$\rightarrow P_0(x)$ is an eigenfunction of H_{FP} & λ is the corresponding eigenvalue.

If H_{FP} is diagonalizable in $\mathcal{H}(P)$, there is a basis $\varphi_\alpha(x)$ of eigenfunctions of H_{FP} , with associated eigenvalues λ_α , such that $H_{FP} \varphi_\alpha(x) = \lambda_\alpha \varphi_\alpha(x)$

Evolution of P

Since φ_α is a basis, any $P(x, t)$ can be written as $P(x, t) = \sum_\alpha c_\alpha(t) \varphi_\alpha(x)$

$$\begin{aligned} \text{then } \frac{\partial}{\partial t} P &= -H_{FP} \sum_\alpha c_\alpha(t) \varphi_\alpha(x) = -\sum_\alpha c_\alpha(t) H_{FP} \varphi_\alpha(x) \\ &= -\sum_\alpha c_\alpha(t) \lambda_\alpha \varphi_\alpha(x) \end{aligned}$$

$$\text{but also } \frac{\partial}{\partial t} P = \frac{\partial}{\partial t} \sum_\alpha c_\alpha(t) \varphi_\alpha(x) = \sum_\alpha \dot{c}_\alpha(t) \varphi_\alpha(x)$$

$$\text{Since } \varphi_\alpha \text{ is a basis, this implies } \dot{c}_\alpha(t) = -\lambda_\alpha c_\alpha(t) \quad \& \quad c_\alpha(t) = e^{-\lambda_\alpha t} c_\alpha(0)$$

① Take $P_0(x)$

② Expand it as $P_0(x) = \sum_{\alpha} c_{\alpha}(0) \varphi_{\alpha}(x)$

③ For all times t , $P(x, t) = \sum_{\alpha} c_{\alpha}(0) e^{-\lambda_{\alpha} t} \varphi_{\alpha}(x)$

If you can diagonalize H_{FP} \Rightarrow problem solved!

Comment: $\text{Re}(\lambda_{\alpha}) > 0$ is required, otherwise $P(x, t)$ blows up as $t \rightarrow \infty$.

The existence of a steady state requires $\sum_{\alpha} c_{\alpha}(0) = 1 = 0$

Equilibrium dynamics with a confining potential $V(x)$

The Perron-Frobenius theorem states that, for a confining potential,

① H_{FP} is diagonalizable with $\lambda_{\alpha} \in \mathbb{R}^+$

② there is a unique ground state such that $\lambda_0 = 0$.

As $t \rightarrow \infty$, the contribution of excited states decay exponentially

and the system equilibrates: $P(x, t) = \sum_{\alpha} c_{\alpha}^0 e^{-\lambda_{\alpha} t} \varphi_{\alpha}(x) \rightarrow c_0 \varphi_0(x)$

Gapped spectrum and relaxation rate

Consider $P(x, 0) = c_1 \varphi_1(x) + c_2 \varphi_2(x)$ with $\text{Re}(\lambda_1) < \text{Re}(\lambda_2)$, then

$$P(x, t) = c_1 \varphi_1 e^{-\lambda_1 t} + c_2 \varphi_2 e^{-\lambda_2 t} = c_1 e^{-\lambda_1 t} \left[\varphi_1 + \underbrace{\frac{c_2}{c_1} \varphi_2 e^{-(\lambda_2 - \lambda_1)t}}_{\rightarrow 0} \right]$$

φ_2 is forgotten at a typical rate which is $\frac{1}{\lambda_2 - \lambda_1}$. $\Leftrightarrow 1/\lambda_2 - \lambda_1$

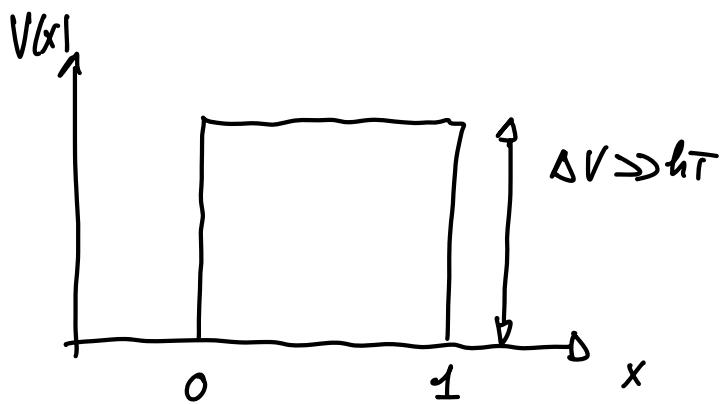
\Rightarrow the typical time scales of the system can be read in the spectrum of H_{FP} .

\Rightarrow can be used to define metastability and reaction paths.

[Toumaz-Nicola, Kurchan, J. Stat. Phys. 116, 1201 (2004)]

For systems with N degrees of freedom, one may end up with a continuous spectrum as $N \rightarrow \infty$ ($\lambda_2 - \lambda_1 \rightarrow 0$). The relaxation can then become very slow as in glassy materials. $T \rightarrow 0$ & $N \rightarrow \infty$ do not necessarily commute.

3.2) Example of diagonalization of H_{FP} : diffusion with absorbing boundaries



If the particle exits $[0,1]$, then it cannot come back.
 \Rightarrow model as a random walk in $[0,1]$ with absorbing boundary conditions.

Q: how much time until absorption?

This is the simplest form of a question frequently encountered: how does a diffusive molecule reach a target? (Hem, target $x=0$)

More generally:

Starting from x_0 in $(0,1)$, how does the probability to remain in $[0,1]$ evolve in time? $\Rightarrow P(x,t|x_0,0)$ conditioned to having stayed in $[0,1]$ $\Rightarrow P(x,t|x_0,0) = 0$ for $x \leq 0$ & $x \geq 1$.

In practice, solve $\frac{\partial}{\partial t} P(x,t) = kT \frac{\partial^2}{\partial x^2} P(x,t)$ with $P(x=0,t) = P(x=1,t) = 0$.

Survival probability: $Q(t) = \int_0^1 dx P(x,t)$ is the probability that the system is still in $[0,1]$ at time t .

Solution: Consider $H_{FP} = -D \frac{\partial^2}{\partial x^2}$ and look for a basis of eigenfunctions satisfying the boundary conditions. (9)

$$H_{FP} \psi = \lambda \psi \Leftrightarrow \psi''(x) = -\frac{\lambda}{D} \psi(x)$$

$$\Rightarrow \psi(x) = A e^{i \sqrt{\frac{\lambda}{D}} x} + B e^{-i \sqrt{\frac{\lambda}{D}} x}$$

Boundary conditions $\psi(0) = 0 \Rightarrow A = -B \& \psi(x) = 2iA \sin\left(\sqrt{\frac{\lambda}{D}} x\right)$

$$\psi(1) = 0 \Rightarrow \sqrt{\frac{\lambda}{D}} = h\pi; h \in \mathbb{Z}^+$$

$$\Rightarrow \psi_h(x) = \sin(h\pi x) \& \lambda_h = D h^2 \pi^2 \quad (\text{Fourier basis})$$

$$t=0 \quad P(x,0) = \sum_{h=1}^{\infty} c_h \sin(h\pi x); \quad c_h = 2 \int_0^1 dx \sin(h\pi x) P(x,0)$$

$$\Rightarrow P(x,t) = \sum_{h=1}^{\infty} c_h \sin(h\pi x) e^{-D\pi^2 h^2 t}$$

Example: $P(x,0) = \delta(x-x_0) \Rightarrow c_h = 2 \sin(h\pi x_0)$

$$P(x,t) = \sum_{h=1}^{\infty} 2 \sin(h\pi x) \sin(h\pi x_0) e^{-D\pi^2 h^2 t}$$

$$\sim 2 \sin(\pi x) \sin(\pi x_0) e^{-D\pi^2 t}$$

$$Q(t) \sim \frac{4}{\pi} \sin(\pi x_0) e^{-D\pi^2 t}$$

\Rightarrow late-time absorption rate $\kappa = \frac{1}{D\pi^2}$ with a position-dependent modulation of the survival probability.

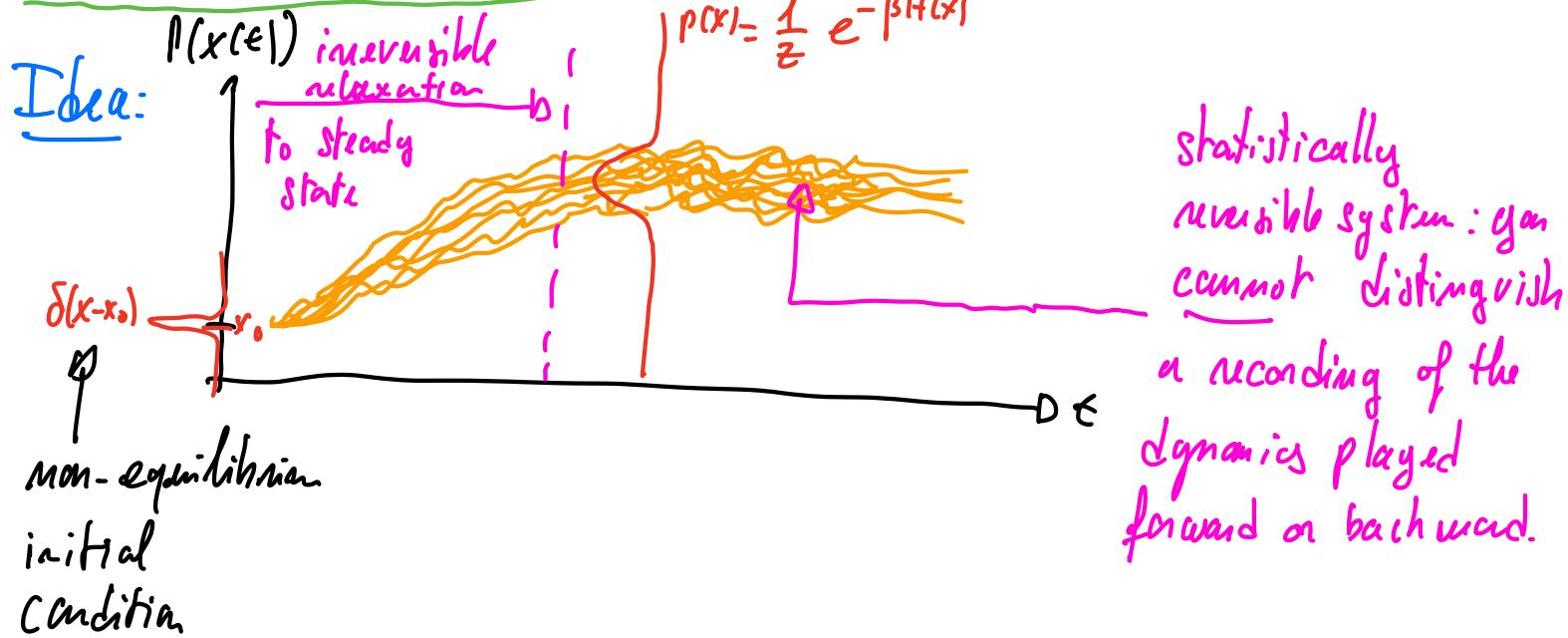
Chapter 4] Time Reversal Symmetry

(10)

Historically, equilibrium corresponds to $P(x) = \frac{1}{Z} e^{-\beta H(x)}$ (§. 333)
(§. 044)

Modern perspective on statistical mechanics puts an emphasis on dynamics & characterize equilibrium by a statistical time reversal symmetry in the steady state.

Q: What does it mean & how do we characterize that?



1) Propagator & Dirac Bra-Ket notation

Remember quantum mechanics: $P(x)$ lives in a Hilbert space, which is a vector space. We can denote the corresponding vector as $|P\rangle$.

Scalar product: $\langle f | g \rangle = \int dx f^*(x) g(x)$

Adjoint operator: $\langle f | M g \rangle = \langle M^* f | g \rangle$

E.g. $\langle f | \partial_x g \rangle = \int dx f^*(x) \partial_x g = - \int dx \partial_x f^* \cdot g = \langle -\partial_x f | g \rangle \Rightarrow \frac{\partial}{\partial x}^+ = - \frac{\partial}{\partial x}$

$$= \langle \frac{\partial}{\partial x}^+ f | g \rangle$$

Position operator & representation

$|x\rangle$ such that $\hat{x}|x\rangle = x|x\rangle$, $|x\rangle$ position basis
position operator

Observable: $O(x) \rightarrow$ operator \hat{O} such that $\hat{O}|x\rangle = O(x)|x\rangle$

$$\text{e.g. } \hat{P}|x\rangle = P(x)|x\rangle$$

Scalar product: $\langle x|$ such that $\langle x|x' \rangle = \delta(x-x')$

Flat measure: $| \rightarrow = \int dx |x\rangle$

Representation of probability distribution:

$$\hat{P}| \rightarrow = |P\rangle = \hat{P} \int dx |x\rangle = \int dx \hat{P}|x\rangle = \int dx P(x) |x\rangle$$

component \downarrow basis vector

Probabilities

$$\langle x|P\rangle = \int dx' P(x') \underbrace{\langle x|x' \rangle}_{\delta(x-x')} = P(x) \quad \text{different from Qm.}$$

Average of observables:

$$\begin{aligned} \langle O(x) \rangle &= \int dx O(x) P(x) = \int dx \int dx' \delta(x-x') O(x') P(x') \\ &= \int dx \int x' \langle x|x' \rangle O(x') P(x') \\ &= \langle -|O|P \rangle \end{aligned}$$

Fokker-Planck equation:

$$\partial_t |P(t)\rangle = \int dx \partial_x P(x,t) |x\rangle = - \int dx H_{FP} P(x,t) |x\rangle = - H_{FP} |P(t)\rangle$$

Formal solution: $|P(t)\rangle = e^{-tH_{FP}} |P_0\rangle$

Initial condition $x=x_0$:

Any observable Θ such that $\langle \Theta(t=0) \rangle = \Theta(x_0) = \int dx \delta(x-x_0) \Theta(x_0)$

$\Rightarrow P(x, t=0) = \delta(x-x_0) \Rightarrow |P(t=0)\rangle = |x_0\rangle \Rightarrow$

$$\Rightarrow |P(t)\rangle = e^{-tH_{FP}} |x_0\rangle$$

Note that $\int dx \delta(x-x_0) = 1$ so that P is normalized

Propagator:

The probability to go from x_0 to x in time t is called a "propagator":

$$P(x, t|x_0, 0) = \langle x | e^{-tH_{FP}} | x_0 \rangle$$

measures the probability in x evolve for a time t start here

2) Detailed balance & time-reversal symmetry

Statistical time reversibility: a succession of events is as likely to occur as the time reversed sequence.

$$\text{E.g. } P(x, t; x_0, t_0) = P(x_0, t; x, t_0) \text{ for } t_0 < t \quad (1)$$

Claim: At large times ($t_0 \rightarrow \infty$), the evolution induced by H_{FP} leads to a steady-state that is time-reversal symmetric.

Q: Can we read directly in H_{FP} this property?

(i.e. without having to solve for $P(x, t; x_0, t_0)$)

Since $P(a, b) = P(a|b) P(b)$, (1) can be rewritten as:

$$P(x, t | x_0, t_0) = P(x_0, t_0) P(x, t_0)$$

$$\Leftrightarrow \langle x | e^{-(t-t_0)H_{FP}} | x_0 \rangle P(x, t_0) = \langle x_0 | e^{-(t-t_0)H_{FP}} | x \rangle P(x, t_0) \quad (2)$$

If $t_0 \rightarrow \infty$, $P(x, t) \rightarrow P_s(x)$ the stationary state

Since $\langle x_0 | e^{-(t-t_0)H_{FP}} | x \rangle \in \mathbb{R}$,

$$\langle x_0 | e^{-(t-t_0)H_{FP}} | x \rangle = \left[\langle x_0 | e^{-t-t_0} H_{FP} | x \rangle \right]^+ = \langle x | e^{-(t-t_0)H_{FP}^+} | x_0 \rangle$$

$$(2) \Leftrightarrow \langle x | e^{-(t-t_0)H_{FP}} | x_0 \rangle = P_s(x) \langle x | e^{-(t-t_0)H_{FP}^+} | x_0 \rangle P_s^{-1}(x_0)$$

$$= \langle x | P_s e^{-(t-t_0)H_{FP}^+} P_s^{-1} | x_0 \rangle$$

Expand for small $t - t_0$: $e^{-\mu H_{FP}} = I_d - \mu H_{FP}$

$$(\star) \Leftrightarrow \langle x | x_0 \rangle - (t-t_0) \langle x | H_{FP} | x_0 \rangle = \langle x | x_0 \rangle - (t-t_0) \langle x | P_s H_{FP}^+ P_s^{-1} | x_0 \rangle$$

Holds $\forall x, x_0$, so that TRS \Rightarrow $H_{FP} = P_s H_{FP}^+ P_s^{-1}$ and $H_{FP}^+ = P_s^{-1} H_{FP} P_s$ (3)