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3 TheFokker Planh operate

deP AT Fex PH I 111 deP Hepp where

Hep 8 at Fixi whith cuts on the Hilbertspaceof function

H P that depends on the dimensions boundary conditionsof theproblem

3 1 Relaxation towards equilibrium

Howdoes a system relax towards equilibria

Talliveasatz PlnEl ftp.cxt
11 dep Hip low e 7 Poé HepPolx 2 Po x

Pola is an eigenfunctionof App 7 is the corresponding eigenvalue

If Hpp is diag aalizable in If P then is a basis 9 n ofeigentwetic

of Hpp with associated eigenvalues 7s suitthat Hep9 n 7 4 121

a basis any plant can bewritten as Platt Calet42121

then de P Hep Calf4am CactiHeplocal

I Calf Xx 92 n
butalso deP de Catti 6 in Cat 922
Since Qa is a basis this implies cilt 7 calf calt é aid



Take Polal

Expand it as Polal Carol 9 a

For all times t Pla t I Calole pacal

If you can diagonalize Hep problem solved

Comment Re 7 1 o is required otherwise Pln E blows up as E D 0

The existenceof a steady state requires Inf X 7 0

Equilibrium dynamics with a confining potential V61

The Person Froebenius theorem states that for a confining potential

Hep is diagonalizable with Xx E Rt

then is a unique grand
state such that 70 0

Ast so the contribution ofexcited states decay expantially
and the system equilibrals PlnEl cg e

t
9 cal coYok

Gapped spectrumand relaxation rate
Consider P x ol C 4 exit real with Re di Me di then

pixel cie e
it
and e

t
aé that

4 is forgotten at a typical ratewhilis

the typicaltime scalesof the system can be read in the spectrumof
Hip
can be used to define relastability and reaction path

Tanate Nicola Kunshan J Stat Phys 116 1101 10041



For systes with Ndegreesof freeda on may end up with a
continuous spectra as N 00 13 1 0 The relaxation

can then became very slot as in glasing materials 00

N D donotnecessarily commute

3 2 Example ofdiagonalization of Hep diffusionwith absorbingboundaries

V14 If theparticleexits 0,13 then

M
arsat it cannotcome back

model as a random walk in Co I
Its

with absorbing boundary conditions

howmuchtimeuntil absorption

This is the simplestform of a question frequently encountered

how does a diffusive molecule reach atarget Hen target a 0,17

Megenally
Starting from in 10,1 how doestheprobability to

remain in 0,1 evolve in time P x t no 0 conditioned

to having stayed in Co it Pk Ela 0 for a
231

In practice solve deP a.tl At dy p x t with P no E Pla 1,4 0

Sevivalprobability QLH SidxPlx.tt is the probability that

the system is still in Co is at timt



Sin Consider Hep D and look for a basis of
eigenfunctions satisfying the boundary conditions

HepY 4 4 a 4 a

4 cal Air B e
i a

Bday his 4 Col 0 A B 9 cal 2 A sin Ipn
9 111 0 Is her he

4h a sin hex Xa Dh't Ianier basis

to Pla ol a sin hex Ch du sinhen P n o

Planet E ch sin then e
Didn't

Example P n o d x x Ca 2 sin hino

Pln El IT 2 sin hint sin heno e
Pt'd't

1h
sin on sin no e

Pt't

914 sinking e
Pt't

late time absubtionnate k with a position dependent

modulation of the survival probability



t.FI itmiiie mmim
18 0441

Modern perspective on statisticalmechanics puts an emphasis on

dynamics characterize equilibrium by a statistical time

reversal symmetry in the steady state
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